Smoothing dati rimuove variazione casuale e tendenze spettacoli e componenti cicliche inerenti alla raccolta dei dati presi nel corso del tempo è una qualche forma di variazione casuale. Esistono metodi per ridurre di annullare l'effetto dovuto alla variazione casuale. Una tecnica spesso utilizzata nel settore è levigante. Questa tecnica, se applicato correttamente, rivela più chiaramente la tendenza di fondo, stagionale e componenti cicliche. Ci sono due gruppi distinti di metodi di lisciatura Averaging Metodi esponenziali metodi di lisciatura medie prendere è il modo più semplice per lisciare i dati Per prima cosa studiare alcuni metodi di calcolo della media, come ad esempio la media semplice di tutti i dati passati. Un gestore di un magazzino vuole sapere quanto un fornitore tipico offre in 1000 unità in dollari. Heshe prende un campione di 12 fornitori, in modo casuale, ottenendo i seguenti risultati: La media calcolata o media dei dati 10. Il gestore decide di utilizzare questo come la stima delle spese di un fornitore tipico. Si tratta di una stima buona o cattiva quadratico medio errore è un modo per giudicare come un buon modello è Dobbiamo calcolare l'errore quadratico medio. Il vero errore importo speso meno l'importo stimato. L'errore al quadrato è l'errore di cui sopra, al quadrato. Il SSE è la somma degli errori quadratici. Il MSE è la media degli errori quadratici. MSE risulta per esempio I risultati sono: Error e errori al quadrato La stima 10 si pone la domanda: possiamo usare il mezzo per prevedere reddito se abbiamo il sospetto un trend Uno sguardo al grafico qui sotto mostra chiaramente che non dovremmo farlo. Media pesa tutte le osservazioni passate altrettanto In sintesi, si precisa che la media semplice o media di tutte le osservazioni del passato è solo una stima utile per la previsione quando non ci sono le tendenze. Se ci sono tendenze, utilizzare diverse stime che tengono il trend in considerazione. La media pesa tutte le osservazioni del passato allo stesso modo. Ad esempio, la media dei valori 3, 4, 5 è 4. Sappiamo, naturalmente, che in media è calcolata sommando tutti i valori e dividendo la somma per il numero di valori. Un altro modo di calcolare la media è aggiungendo ogni valore diviso per il numero di valori, o 33 43 53 1 1,3333 1,6667 4. Il moltiplicatore 13 è chiamato il peso. In generale: bar sum frac sinistra (frac destra) x1 sinistra (frac destra) x2,. ,, A sinistra (frac destra) xn. L'(a sinistra (frac destra)) sono i pesi e, ovviamente, essi sintetizzano a Medie 1.Moving - semplici e medie mobili esponenziali - semplice ed esponenziale Introduzione Moving medie lisciare i dati sui prezzi in modo da formare una tendenza seguente indicatore. Essi non prevedere la direzione dei prezzi, ma piuttosto definiscono la direzione della corrente con un certo ritardo. Le medie mobili in ritardo perché si basano sui prezzi passati. Nonostante questo ritardo, medie mobili rendere più agevole l'azione dei prezzi e filtrare il rumore. Formano anche le basi per molti altri indicatori e sovrapposizioni tecniche, come le bande di Bollinger. MACD e il McClellan Oscillator. I due tipi più popolari di medie mobili sono la media mobile semplice (SMA) e la media mobile esponenziale (EMA). Queste medie mobili possono essere usate per identificare la direzione del trend o definire potenziali livelli di supporto e resistenza. Here039s un grafico sia con un SMA e di un EMA su di esso: mobile semplice calcolo della media Una media mobile semplice è formata calcolando il prezzo medio di un titolo su un determinato numero di periodi. La maggior parte delle medie mobili si basano sui prezzi di chiusura. Una media mobile semplice di 5 giorni è la somma di cinque giorni dei prezzi di chiusura diviso per cinque. Come suggerisce il nome, una media mobile è una media che si muove. Vecchio dati si interrompe come nuovi dati viene disponibili. Questo fa sì che la media di muoversi lungo la scala temporale. Di seguito è riportato un esempio di una 5 giorni di media mobile evoluzione nell'arco di tre giorni. Il primo giorno della media mobile copre semplicemente gli ultimi cinque giorni. Il secondo giorno della media mobile scarta il primo punto di dati (11) e aggiunge il nuovo punto di dati (16). Il terzo giorno della media mobile continua facendo cadere il primo punto di dati (12) e aggiungendo il nuovo punto di dati (17). Nell'esempio precedente, i prezzi aumentano gradualmente dal 11 al 17 per un totale di sette giorni. Si noti che la media mobile si alza anche dal 13 al 15 nel corso di un periodo di calcolo di tre giorni. Si noti inoltre che ogni valore della media mobile è appena sotto l'ultimo prezzo. Ad esempio, la media mobile per il primo giorno è uguale a 13 e l'ultimo prezzo è 15. I prezzi delle precedenti quattro giorni erano più bassi e questo fa sì che la media mobile di lag. Mobile esponenziale calcolo medio medie mobili esponenziali a ridurre il ritardo, applicando un peso maggiore ai prezzi recenti. La ponderazione applicata al prezzo più recente dipende dal numero di periodi in media mobile. Ci sono tre passi per il calcolo di una media mobile esponenziale. In primo luogo, calcolare la media mobile semplice. Una media mobile esponenziale (EMA) deve cominciare da qualche parte in modo da una media mobile semplice è usato come il precedente period039s EMA nel primo calcolo. In secondo luogo, calcolare il moltiplicatore ponderazione. In terzo luogo, calcolare la media mobile esponenziale. La formula che segue è un EMA 10 giorni. Una media mobile esponenziale a 10 periodi si applica una ponderazione 18.18 al prezzo più recente. A EMA 10-periodo può anche essere chiamato un 18.18 EMA. A EMA a 20 periodi si applica un peso di 9.52 per il prezzo più recente (2 (201) 0,0952). Si noti che il coefficiente per il periodo di tempo più breve è maggiore della ponderazione per il periodo di tempo più lungo. Infatti, la ponderazione scende della metà ogni volta che si spostano doppie medi di periodo. Se si vuole noi una percentuale specifica di un EMA, è possibile utilizzare questa formula per convertirlo in periodi di tempo e quindi immettere il valore come parametro EMA039s: Di seguito è riportato un esempio di foglio di calcolo di un 10 giorni di media mobile semplice e di un 10- giorno medio mobile esponenziale per Intel. Semplici medie mobili sono dritto in avanti e richiedono poca spiegazione. La media di 10 giorni si sposta semplicemente come nuovi prezzi disponibili e prezzi vecchi scendere. La media mobile esponenziale inizia con il semplice valore media mobile (22.22) nel primo calcolo. Dopo il primo calcolo, la formula normale riprende. Perché un EMA inizia con una media mobile semplice, il suo vero valore, non sarà realizzato fino a 20 o giù di periodi successivi. In altre parole, il valore sul foglio di calcolo Excel può differire dal valore grafico a causa del periodo di sguardo-back breve. Questo foglio di calcolo va solo indietro di 30 periodi, il che significa l'effetto della semplice media mobile ha avuto 20 periodi a dissipare. StockCharts risale almeno 250-periodi (tipicamente molto maggiori) per i suoi calcoli così gli effetti della media mobile nel primo calcolo sono completamente dissipata. Il GAL Factor Più lunga è la media mobile, più il ritardo. Una media mobile esponenziale a 10 giorni sarà abbracciare prezzi abbastanza da vicino e girare poco dopo che i prezzi girano. medie mobili brevi sono come barche di velocità - agile e veloce da cambiare. Al contrario, una media mobile di 100 giorni contiene un sacco di dati passato che lo rallenta. le medie più in movimento sono come cisterne oceano - letargico e lento a cambiare. Ci vuole un movimento di prezzo più grande e più a lungo per una 100 giorni di media mobile a cambiare rotta. Il grafico in alto mostra la 500 ETF SampP con 10 giorni EMA strettamente seguenti prezzi e una SMA di 100 giorni di rettifica superiore. Anche con il calo di gennaio-febbraio, i 100 giorni SMA ha tenuto il corso e non si voltò verso il basso. L'50 giorni di SMA si inserisce da qualche parte tra il giorno 10 e 100 medie mobili quando si tratta di fattore di ritardo. Semplice vs mobile esponenziale Medie Anche se ci sono chiare differenze tra semplici medie mobili e le medie mobili esponenziali, uno non è necessariamente migliore dell'altra. medie mobili esponenziali hanno meno lag e sono quindi più sensibili ai prezzi recenti - e recenti cambiamenti di prezzo. medie mobili esponenziali si trasformerà prima semplici medie mobili. Semplici medie mobili, dall'altro, rappresentano un vero valore medio dei prezzi per l'intero periodo di tempo. Come tale, semplici medie mobili possono essere più adatto per identificare i livelli di supporto o di resistenza. Spostamento di preferenza media dipende da obiettivi, lo stile analitico e orizzonte temporale. Chartists dovrebbero sperimentare con entrambi i tipi di medie mobili, nonché diversi orizzonti temporali, per trovare la soluzione migliore. Il grafico sottostante mostra IBM con il 50 giorni di SMA in rosso e il 50 giorni di EMA in verde. Sia ha raggiunto un picco a fine gennaio, ma il calo del EMA era più nitida rispetto al calo del SMA. L'EMA alzato a metà febbraio, ma la SMA ha continuato inferiore fino alla fine di marzo. Si noti che la SMA alzato più di un mese dopo l'EMA. Lunghezze e tempi La lunghezza della media mobile dipende dagli obiettivi analitici. medie mobili a breve (5-20 periodi) sono più adatti per le tendenze a breve termine e il commercio. Chartists interessati nelle tendenze a medio termine sarebbe optare per le medie più in movimento che potrebbe estendersi 20-60 periodi. investitori a lungo termine preferiranno medie mobili con 100 o più periodi. Alcuni lunghezza media in movimento sono più popolari di altri. La media mobile a 200 giorni è forse il più popolare. A causa della sua lunghezza, questo è chiaramente un media mobile di lungo termine. Successivamente, la media mobile a 50 giorni è molto popolare per la tendenza a medio termine. Molti chartists utilizzano le medie di 50 giorni e 200 giorni in movimento insieme. A breve termine, una media mobile di 10 giorni era molto popolare in passato perché era facile da calcolare. Uno semplicemente aggiunti i numeri e si è trasferito il punto decimale. Trend di identificazione Gli stessi segnali possono essere generati utilizzando medie mobili semplici o esponenziali. Come notato sopra, la preferenza dipende da ogni individuo. Questi esempi di seguito utilizzeranno entrambe le medie mobili semplici ed esponenziali. La media termine in movimento si applica sia alle medie mobili semplici ed esponenziali. La direzione della media mobile trasmette informazioni importanti sui prezzi. Una media mobile aumento dimostra che i prezzi sono generalmente in aumento. Una media mobile calo indica che i prezzi, in media, sono in calo. Un aumento a lungo termine media mobile riflette un trend rialzista a lungo termine. A lungo termine si muove cadere media riflette una tendenza al ribasso a lungo termine. Il grafico in alto mostra 3M (MMM) con una media mobile esponenziale a 150 giorni. Questo esempio dimostra quanto bene medie mobili funzionano quando la tendenza è forte. I 150 giorni di EMA ha respinto nel novembre 2007 e nuovamente nel gennaio 2008. Si noti che ci sono voluti un calo del 15 per invertire la direzione di questa media mobile. Questi indicatori in ritardo di sviluppo identificano le inversioni di tendenza in cui si verificano (nella migliore delle ipotesi) o dopo che si verifichino (nel peggiore dei casi). MMM continuato inferiore nel marzo 2009 e poi è salito 40-50. Si noti che i 150 giorni EMA non girare fino a dopo questa ondata. Una volta lo ha fatto, tuttavia, ha continuato MMM superiore i prossimi 12 mesi. Le medie mobili funzionano brillantemente nelle tendenze forti. Doppia Crossover due medie mobili possono essere utilizzati insieme per generare segnali di crossover. In Analisi tecnica dei mercati finanziari. John Murphy chiama questo il metodo della partita doppia crossover. crossover doppie comporta uno relativamente breve media mobile e una media relativamente lunga in movimento. Come con tutti i media mobile, la lunghezza complessiva della media mobile definisce i tempi per il sistema. Un sistema che utilizza un EMA 5 giorni e 35 giorni EMA sarebbe ritenuto breve termine. Un sistema che utilizza un 50 giorni di SMA e 200 giorni SMA sarebbe considerato a medio termine, forse anche a lungo termine. Un crossover rialzista si verifica quando i più brevi in movimento croci sopra la media la media più in movimento. Questo è anche conosciuto come una croce d'oro. Un crossover ribassista si verifica quando i più brevi in movimento croci bassi rispetto alla media più in movimento. Questo è noto come una croce morto. In movimento crossover media producono segnali relativamente tardi. Dopo tutto, il sistema impiega due indicatori in ritardo di sviluppo. Più lungo è il movimento periodi medi, maggiore è il ritardo nei segnali. Questi segnali grande lavoro quando un buon andamento prende piede. Tuttavia, un sistema di crossover media mobile produrrà un sacco di whipsaws in assenza di una forte tendenza. Vi è anche un metodo di crossover tripla che prevede tre medie mobili. Ancora una volta, un segnale viene generato quando la media più breve mobile attraversa le due medie più mobili. Un semplice sistema a tre di crossover potrebbe coinvolgere 5 giorni, 10 giorni e 20 giorni medie mobili. Il grafico in alto mostra Home Depot (HD) con un EMA a 10 giorni (linea verde tratteggiata) e 50 giorni di EMA (linea rossa). La linea nera è il quotidiano vicino. Utilizzando un crossover media mobile avrebbe comportato tre whipsaws prima di prendere un buon mestiere. Il 10-giorni EMA ha rotto al di sotto dei 50 giorni EMA alla fine di ottobre (1), ma questo non durò a lungo come il 10-giorni è tornato sopra a metà (2) novembre. Questa croce è durato più a lungo, ma il prossimo incrocio ribassista a (3) Gennaio si è verificato nei pressi di novembre i livelli di fine dei prezzi, con conseguente un'altra whipsaw. Questo cross ribassista non durò a lungo, come i 10 giorni di EMA è tornato sopra i 50 giorni di pochi giorni dopo (4). Dopo tre segnali cattivi, il quarto segnale prefigurato una mossa forte come il magazzino avanzato oltre 20. Ci sono due take away qui. In primo luogo, crossover sono inclini a Whipsaw. Un filtro di prezzo o di tempo può essere applicata per aiutare a prevenire whipsaws. I commercianti potrebbero richiedere il crossover durare 3 giorni prima di agire o richiedere i 10 giorni di EMA per spostare il abovebelow 50 giorni EMA da una certa quantità prima di agire. In secondo luogo, MACD può essere utilizzato per identificare e quantificare questi crossover. MACD (10,50,1) mostrerà una linea che rappresenta la differenza tra le due medie mobili esponenziali. MACD diventa positivo nel corso di una croce d'oro e negativo nel corso di una croce morto. La percentuale Price Oscillator (PPO) può essere utilizzato allo stesso modo per mostrare le differenze percentuali. Si noti che MACD e il PPO si basano su medie mobili esponenziali e non corrisponderanno con semplici medie mobili. Questo grafico mostra Oracle (ORCL), con il 50 giorni EMA, EMA 200 giorni e MACD (50,200,1). Ci sono stati quattro in movimento crossover medi per un periodo di 2 di 12 anni. I primi tre provocato whipsaws o mestieri male. Una tendenza sostenuta iniziata con la quarta di crossover come ORCL avanzate per metà degli anni '20. Ancora una volta, in movimento crossover medi grande lavoro quando la tendenza è forte, ma producono perdite in assenza di una tendenza. Prezzo Crossover Le medie mobili possono essere utilizzati anche per generare segnali con semplici crossover di prezzo. Un segnale rialzista viene generato quando i prezzi si muovono al di sopra della media mobile. Un segnale ribassista è generato quando i prezzi si muovono al di sotto della media mobile. crossover prezzo possono essere combinati per scambi all'interno della tendenza più grande. La media è più in movimento dà il tono per la tendenza più grande e la media mobile più breve è utilizzato per generare i segnali. Si potrebbe guardare per incroci rialzisti dei prezzi solo quando i prezzi sono già al di sopra della media più in movimento. Questo sarebbe la negoziazione di sintonia con la tendenza più grande. Ad esempio, se il prezzo è al di sopra della media mobile a 200 giorni, chartists si concentrerà unicamente su segnali quando il prezzo si muove al di sopra del 50 giorni di media mobile. Ovviamente, una mossa al di sotto della media mobile a 50 giorni sarebbe precedere tale segnale, ma tali cross ribassisti verrebbe ignorato perché la tendenza più grande è alto. Un cross ribassista sarebbe semplicemente suggerire un pullback all'interno di un trend al rialzo più grande. Una croce di nuovo al di sopra della media mobile a 50 giorni segnalerebbe una ripresa dei prezzi e continuazione del trend rialzista più grande. Il grafico seguente mostra Emerson Electric (EMR) con la 50 giorni EMA e 200 giorni EMA. Il titolo è passato sopra e tenuto al di sopra della media mobile a 200 giorni nel mese di agosto. Ci sono stati cali al di sotto del 50 giorni EMA ai primi di novembre e di nuovo all'inizio di febbraio. I prezzi si muovevano rapidamente indietro al di sopra del 50 giorni EMA a fornire segnali rialzisti (frecce verdi) in armonia con il trend rialzista più grande. MACD (1,50,1) viene visualizzato nella finestra dell'indicatore di confermare croci di prezzo sopra o sotto il 50 giorni EMA. L'EMA di 1 giorno è uguale al prezzo di chiusura. MACD (1,50,1) è positivo quando la chiusura è superiore al 50 giorni EMA e negativo quando la chiusura è inferiore al 50 giorni EMA. Supporto e resistenza Le medie mobili possono anche fungere da supporto in una tendenza rialzista e resistenza in un trend al ribasso. Un trend rialzista di breve termine potrebbe trovare supporto nei pressi della media mobile semplice a 20 giorni, che viene utilizzato anche in bande di Bollinger. Un trend rialzista di lungo termine potrebbe trovare supporto nei pressi della media mobile semplice a 200 giorni, che è il più popolare media mobile di lungo periodo. Se, infatti, la media mobile a 200 giorni può offrire supporto o resistenza semplicemente perché è così ampiamente usato. E 'quasi come una profezia che si autoavvera. Il grafico qui sopra mostra il NY Composite con la semplice media mobile a 200 giorni a partire da metà 2004 fino alla fine del 2008. Il 200 giorni fornito un supporto più volte durante l'avanzata. Una volta che la tendenza si è invertita con una doppia interruzione di supporto superiore, la media mobile a 200 giorni ha agito come resistenza intorno a 9500. Non aspettatevi esatti livelli di supporto e resistenza da medie mobili, in particolare più medie mobili. I mercati sono guidati dalle emozioni, che li rende inclini a superamenti. Invece di livelli precisi, medie mobili possono essere utilizzati per individuare le zone di supporto o di resistenza. Conclusioni I vantaggi di usare medie mobili devono essere pesati contro gli svantaggi. Le medie mobili sono trend following, o in ritardo, gli indicatori che saranno sempre un passo indietro. Questo non è necessariamente una brutta cosa, però. Dopo tutto, il trend è tuo amico, ed è migliore per il commercio nella direzione del trend. Le medie mobili assicurare che un trader è in linea con l'attuale tendenza. Anche se la tendenza è tuo amico, titoli trascorrono gran parte del tempo in trading range, che rendono inefficace medie mobili. Una volta in un trend, medie mobili vi terrà in, ma anche dare segnali in ritardo. Don039t si aspettano di vendere in alto e compra al fondo utilizzando medie mobili. Come la maggior parte strumenti di analisi tecnica, medie mobili non dovrebbero essere usati da soli, ma in combinazione con altri strumenti complementari. Chartists possono usare le medie mobili per definire la tendenza generale e quindi utilizzare RSI per definire i livelli di ipercomprato o ipervenduto. L'aggiunta di medie mobili a StockCharts Grafici Le medie mobili sono disponibili come funzionalità prezzo sovrapposizione sul SharpCharts banco di lavoro. Utilizzando il menu a discesa Overlay, gli utenti possono scegliere tra una media mobile semplice o una media mobile esponenziale. Il primo parametro viene utilizzato per impostare il numero di periodi di tempo. Un parametro opzionale può essere aggiunto per specificare quale campo di prezzo dovrebbe essere utilizzato nei calcoli - O per l'Open, H per l'Alto, L per la bassa, e C per la chiusura. Una virgola viene utilizzato per i parametri separati. Un altro parametro opzionale può essere aggiunto a spostare le medie mobili al (passato) o di destra (futuro) di sinistra. Un numero negativo (-10) sposterebbe la media mobile a 10 periodi sinistra. Un numero positivo (10) sposterebbe la media mobile a destra 10 periodi. Più medie mobili possono essere sovrapposti trama prezzo semplicemente aggiungendo un'altra linea di sovrapposizione al banco da lavoro. i membri StockCharts possono cambiare i colori e lo stile di distinguere tra più medie mobili. Dopo aver selezionato un indicatore, aprire le Opzioni avanzate facendo clic sul piccolo triangolo verde. Opzioni avanzate può essere utilizzato anche per aggiungere una sovrapposizione di media mobile ad altri indicatori tecnici come RSI, CCI, e Volume. Clicca qui per un grafico in diretta con diverse medie mobili differenti. Utilizzando medie mobili con StockCharts scansioni Qui ci sono alcune scansioni di esempio che i membri StockCharts possono utilizzare per eseguire la scansione di vari mobili situazioni media: Rialzista Moving Average Croce: Questo scansioni ricerca azioni con un aumento di 150 giorni di media mobile semplice ed un cross rialzista del 5 - day EMA e di 35 giorni EMA. La media mobile a 150 giorni è in aumento fino a quando è scambiato sopra del suo livello di cinque giorni fa. Un cross rialzista si verifica quando il 5 giorni EMA si muove al di sopra del 35 giorni EMA sul volume superiore alla media. Bearish Moving Average Croce: Questo scansioni ricerca azioni con un calo di 150 giorni di media mobile semplice e una traversa al ribasso del 5 giorni EMA e di 35 giorni EMA. La media mobile a 150 giorni è in calo fino a quando è scambiato al di sotto del livello di cinque giorni fa. Un cross ribassista si verifica quando il 5 giorni EMA si muove al di sotto del 35 giorni EMA sul volume superiore alla media. Lo studio ulteriore John Murphy039s libro ha un capitolo dedicato a medie mobili ed i loro vari usi. Murphy copre i pro ei contro di medie mobili. Inoltre, Murphy mostra come le medie mobili funzionano con le fasce di Bollinger e sistemi di trading basati canale. Analisi Tecnica della media dei mercati finanziari John MurphyMoving e modelli di livellamento esponenziale Come primo passo nel muoversi oltre i modelli medi, modelli random walk, e modelli di tendenza lineare, i modelli non stagionali e le tendenze possono essere estrapolati utilizzando un modello a media mobile o levigante. L'assunto di base dietro media e modelli di livellamento è che la serie temporale è localmente stazionario con una media lentamente variabile. Quindi, prendiamo una media mobile (locale) per stimare il valore corrente della media e poi utilizzarla come la previsione per il prossimo futuro. Questo può essere considerato come un compromesso tra il modello media e la deriva modello random walk-senza-. La stessa strategia può essere utilizzata per stimare e estrapolare una tendenza locale. Una media mobile è spesso chiamato una versione quotsmoothedquot della serie originale, perché la media a breve termine ha l'effetto di appianare i dossi nella serie originale. Regolando il grado di lisciatura (la larghezza della media mobile), possiamo sperare di colpire un qualche tipo di equilibrio ottimale tra le prestazioni dei modelli medi e random walk. Il tipo più semplice di modello di media è il. Semplice (equamente ponderate) Media mobile: Le previsioni per il valore di Y al tempo t1 che viene fatta al tempo t è pari alla media semplice dei più recenti osservazioni m: (Qui e altrove mi utilizzerà il simbolo 8220Y-hat8221 di stare per una previsione di serie temporali Y fatta quanto prima prima possibile da un dato modello.) Questa media è centrato periodo t - (m1) 2, il che implica che la stima della media locale tenderà a restare indietro il vero valore della media locale circa (m1) 2 periodi. Così, diciamo l'età media dei dati nella media mobile semplice (m1) 2 rispetto al periodo per il quale è calcolata la previsione: questa è la quantità di tempo per cui previsioni tenderanno a restare indietro ruotando punti nei dati . Ad esempio, se si sta una media degli ultimi 5 valori, le previsioni saranno circa 3 periodi in ritardo nel rispondere a punti di svolta. Si noti che se m1, il modello di media mobile semplice (SMA) è equivalente al modello random walk (senza crescita). Se m è molto grande (paragonabile alla lunghezza del periodo di stima), il modello SMA è equivalente al modello medio. Come con qualsiasi parametro di un modello di previsione, è consuetudine per regolare il valore di k per ottenere la migliore quotfitquot ai dati, cioè i più piccoli errori di previsione in media. Ecco un esempio di una serie che sembra mostrare fluttuazioni casuali intorno a una media lentamente variabile. Innanzitutto, proviamo per adattarsi con un modello casuale, che è equivalente a una media mobile semplice di 1 termine: Il modello random walk risponde molto velocemente alle variazioni della serie, ma così facendo raccoglie gran parte del quotnoisequot nel dati (le fluttuazioni casuali) e il quotsignalquot (media locale). Se invece cerchiamo una semplice media mobile di 5 termini, si ottiene un insieme più agevole dall'aspetto delle previsioni: Il 5-termine mobile semplice rese medie in modo significativo gli errori più piccoli rispetto al modello random walk in questo caso. L'età media dei dati di questa previsione è 3 ((51) 2), in modo che tende a ritardo punti di svolta da circa tre periodi. (Per esempio, una flessione sembra essersi verificato in periodo di 21, ma le previsioni non girare intorno fino a diversi periodi più tardi.) Si noti che le previsioni a lungo termine dal modello SMA sono una retta orizzontale, proprio come nel random walk modello. Pertanto, il modello SMA presuppone che vi sia alcuna tendenza nei dati. Tuttavia, mentre le previsioni del modello random walk sono semplicemente uguale all'ultimo valore osservato, le previsioni del modello di SMA sono pari ad una media ponderata dei valori ultimi. I limiti di confidenza calcolato dai Statgraphics per le previsioni a lungo termine della media mobile semplice non ottengono più ampio con l'aumento della previsione all'orizzonte. Questo ovviamente non è corretto Purtroppo, non vi è alcuna teoria statistica di fondo che ci dice come gli intervalli di confidenza deve ampliare per questo modello. Tuttavia, non è troppo difficile da calcolare le stime empiriche dei limiti di confidenza per le previsioni di più lungo orizzonte. Ad esempio, è possibile impostare un foglio di calcolo in cui il modello SMA sarebbe stato utilizzato per prevedere 2 passi avanti, 3 passi avanti, ecc all'interno del campione di dati storici. È quindi possibile calcolare le deviazioni standard campione degli errori in ogni orizzonte di previsione, e quindi la costruzione di intervalli di confidenza per le previsioni a lungo termine aggiungendo e sottraendo multipli della deviazione standard appropriato. Se cerchiamo una media del 9 termine semplice movimento, otteniamo le previsioni ancora più fluide e più di un effetto ritardo: L'età media è ora 5 punti ((91) 2). Se prendiamo una media mobile 19-termine, l'età media aumenta a 10: Si noti che, in effetti, le previsioni sono ora in ritardo punti di svolta da circa 10 periodi. Quale quantità di smoothing è meglio per questa serie Ecco una tabella che mette a confronto le loro statistiche di errore, anche compreso in media 3-termine: Modello C, la media mobile a 5-termine, i rendimenti il valore più basso di RMSE da un piccolo margine su 3 - term e 9 termine medie, e le loro altre statistiche sono quasi identici. Così, tra i modelli con le statistiche di errore molto simili, possiamo scegliere se avremmo preferito un po 'più di risposta o un po' più scorrevolezza nelle previsioni. (Torna a inizio pagina.) Browns semplice esponenziale (media mobile esponenziale ponderata) Il modello a media mobile semplice di cui sopra ha la proprietà indesiderabile che tratta le ultime osservazioni k ugualmente e completamente ignora tutte le osservazioni che precedono. Intuitivamente, dati passati devono essere attualizzati in modo più graduale - per esempio, il più recente osservazione dovrebbe avere un peso poco più di 2 più recente, e la 2 più recente dovrebbe ottenere un po 'più peso che la 3 più recente, e presto. Il modello semplice di livellamento esponenziale (SES) realizza questo. Diamo 945 denotano una constantquot quotsmoothing (un numero compreso tra 0 e 1). Un modo per scrivere il modello è quello di definire una serie L che rappresenta il livello attuale (cioè il valore medio locale) della serie come stimato dai dati fino ad oggi. Il valore di L al momento t è calcolata in modo ricorsivo dal proprio valore precedente in questo modo: Così, il valore livellato corrente è una interpolazione tra il valore livellato precedente e l'osservazione corrente, dove 945 controlla la vicinanza del valore interpolato al più recente osservazione. Le previsioni per il prossimo periodo è semplicemente il valore livellato corrente: Equivalentemente, possiamo esprimere la prossima previsione direttamente in termini di precedenti previsioni e osservazioni precedenti, in una delle seguenti versioni equivalenti. Nella prima versione, la previsione è una interpolazione tra precedente meteorologiche e precedente osservazione: Nella seconda versione, la prossima previsione è ottenuta regolando la previsione precedente nella direzione dell'errore precedente di una quantità frazionaria 945. è l'errore al tempo t. Nella terza versione, la previsione è di un (cioè scontato) media mobile esponenziale ponderata con fattore di sconto 1- 945: La versione di interpolazione della formula di previsione è il più semplice da usare se si implementa il modello su un foglio di calcolo: si inserisce in un singola cellula e contiene i riferimenti di cella che puntano alla previsione precedente, l'osservazione precedente, e la cella in cui è memorizzato il valore di 945. Si noti che se 945 1, il modello SES è equivalente ad un modello random walk (senza crescita). Se 945 0, il modello SES è equivalente al modello medio, assumendo che il primo valore livellato è impostata uguale alla media. (Torna a inizio pagina). L'età media dei dati nelle previsioni semplice esponenziale-levigante è di 1 945 relativo al periodo per il quale è calcolata la previsione. (Questo non dovrebbe essere ovvio, ma può essere facilmente dimostrare valutando una serie infinita.) Quindi, la semplice previsione media mobile tende a restare indietro punti di svolta da circa 1 945 periodi. Ad esempio, quando 945 0.5 il ritardo è di 2 periodi in cui 945 0.2 il ritardo è di 5 periodi in cui 945 0.1 il ritardo è di 10 periodi, e così via. Per una data età media (cioè quantità di ritardo), il semplice livellamento esponenziale (SES) previsione è un po 'superiore alla previsione media mobile semplice (SMA) perché pone relativamente più peso sulla più recente --i. e osservazione. è leggermente più quotresponsivequot ai cambiamenti che si verificano nel recente passato. Per esempio, un modello di SMA con 9 termini e un modello di SES con 945 0,2 entrambi hanno un'età media di 5 per i dati nelle loro previsioni, ma il modello SES mette più peso sugli ultimi 3 valori di quanto non faccia il modello SMA e al contempo doesn8217t interamente 8220forget8221 sui valori più di 9 periodi vecchi, come mostrato in questo grafico: un altro importante vantaggio del modello SES sul modello SMA è che il modello SES utilizza un parametro smoothing che è continuamente variabile, in modo che possa facilmente ottimizzato utilizzando un algoritmo quotsolverquot per minimizzare l'errore quadratico medio. Il valore ottimale di 945 nel modello SES a questa serie risulta essere 0,2961, come illustrato di seguito: L'età media dei dati in questa previsione è 10.2961 3.4 periodi, che è simile a quella di una media 6 termine mobile semplice. Le previsioni a lungo termine dal modello SES sono una linea retta orizzontale. come nel modello SMA e il modello random walk senza crescita. Si noti tuttavia che gli intervalli di confidenza calcolati da Statgraphics ora divergono in modo ragionevole dall'aspetto, e che sono sostanzialmente più stretto gli intervalli di confidenza per il modello random walk. Il modello di SES presuppone che la serie è un po 'predictablequot quotmore di quanto non faccia il modello random walk. Un modello SES è in realtà un caso particolare di un modello ARIMA. così la teoria statistica dei modelli ARIMA fornisce una solida base per il calcolo intervalli di confidenza per il modello SES. In particolare, un modello SES è un modello ARIMA con una differenza nonseasonal, un MA (1) termine, e nessun termine costante. altrimenti noto come un modello quotARIMA (0,1,1) senza constantquot. Il MA (1) coefficiente nel modello ARIMA corrisponde alla quantità 1- 945 nel modello SES. Ad esempio, se si adatta un modello ARIMA (0,1,1) senza costante alla serie analizzate qui, il MA stimato (1) coefficiente risulta essere 0,7029, che è quasi esattamente un meno 0,2961. È possibile aggiungere l'assunzione di una tendenza non-zero costante lineare per un modello SES. Per fare questo, basta specificare un modello ARIMA con una differenza non stagionale e di un (1) termine MA con una costante, cioè un (0,1,1) modello ARIMA con costante. Le previsioni a lungo termine avranno quindi una tendenza che è uguale alla tendenza medio rilevato nel corso dell'intero periodo di stima. Non si può fare questo in collaborazione con destagionalizzazione, perché le opzioni di destagionalizzazione sono disattivati quando il tipo di modello è impostato su ARIMA. Tuttavia, è possibile aggiungere una costante a lungo termine tendenza esponenziale ad un semplice modello di livellamento esponenziale (con o senza regolazione stagionale) utilizzando l'opzione di regolazione inflazione nella procedura di previsione. Il tasso appropriato quotinflationquot (crescita percentuale) per periodo può essere stimato come il coefficiente di pendenza in un modello trend lineare montato i dati in combinazione con una trasformazione logaritmo naturale, oppure può essere basata su altri, informazione indipendente per quanto riguarda le prospettive di crescita a lungo termine . (Ritorna all'inizio pagina.) Browns lineari (cioè doppie) modelli esponenziale La SMA e modelli di SES per scontato che non vi è alcuna tendenza di alcun tipo nei dati (che di solito è OK, o almeno non troppo male per 1- previsioni passo avanti quando i dati sono relativamente rumoroso), e possono essere modificati per includere un trend lineare costante come indicato sopra. Che dire di tendenze a breve termine Se una serie mostra un tasso variabile di crescita o un andamento ciclico che si distingue chiaramente contro il rumore, e se vi è la necessità di prevedere più di 1 periodo a venire, allora la stima di una tendenza locale potrebbe anche essere un problema. Il semplice modello di livellamento esponenziale può essere generalizzata per ottenere un modello lineare di livellamento esponenziale (LES) che calcola le stime locali sia a livello e di tendenza. Il modello di tendenza tempo-variante più semplice è Browns lineare modello di livellamento esponenziale, che utilizza due diverse serie levigato che sono centrate in diversi punti nel tempo. La formula di previsione si basa su un'estrapolazione di una linea attraverso i due centri. (Una versione più sofisticata di questo modello, Holt8217s, è discusso qui di seguito.) La forma algebrica di Brown8217s lineare modello di livellamento esponenziale, come quello del semplice modello di livellamento esponenziale, può essere espresso in una serie di forme diverse ma equivalenti. La forma quotstandardquot di questo modello è di solito espressa come segue: Sia S denotano la serie singolarmente-levigata ottenuta applicando semplice livellamento esponenziale di serie Y. Cioè, il valore di S al periodo t è dato da: (Ricordiamo che, in semplice livellamento esponenziale, questo sarebbe il tempo per Y al periodo t1) Allora che Squot denotano la serie doppiamente levigata ottenuta applicando semplice livellamento esponenziale (utilizzando lo stesso 945) per serie S:. Infine, le previsioni per Y tk. per qualsiasi kgt1, è data da: Questo produce e 1 0 (vale a dire imbrogliare un po ', e lasciare che la prima previsione uguale l'attuale prima osservazione), ed e 2 Y 2 8211 Y 1. dopo di che le previsioni sono generati usando l'equazione di cui sopra. Questo produce gli stessi valori stimati come la formula basata su S e S se questi ultimi sono stati avviati utilizzando S 1 S 1 Y 1. Questa versione del modello è usato nella pagina successiva che illustra una combinazione di livellamento esponenziale con regolazione stagionale. modello Holt8217s lineare esponenziale Brown8217s LES calcola stime locali di livello e l'andamento lisciando i dati recenti, ma il fatto che lo fa con un singolo parametro smoothing pone un vincolo sui modelli di dati che è in grado di adattarsi: il livello e tendenza non sono autorizzati a variare a tassi indipendenti. modello Holt8217s LES risolve questo problema includendo due costanti di lisciatura, uno per il livello e uno per la tendenza. In ogni momento t, come nel modello Brown8217s, il c'è una stima L t del livello locale e una T t stima della tendenza locale. Qui vengono calcolati ricorsivamente dal valore di Y osservata al tempo t e le stime precedenti del livello e l'andamento di due equazioni che si applicano livellamento esponenziale separatamente. Se il livello stimato e tendenza al tempo t-1 sono L t82091 e T t-1. rispettivamente, la previsione per Y tshy che sarebbe stato fatto al tempo t-1 è uguale a L t-1 T t-1. Quando si osserva il valore effettivo, la stima aggiornata del livello è calcolata in modo ricorsivo interpolando tra Y tshy e le sue previsioni, L t-1 T t-1, con pesi di 945 e 945. 1- La variazione del livello stimato, vale a dire L t 8209 L t82091. può essere interpretato come una misura rumorosa della tendenza al tempo t. La stima aggiornata del trend viene poi calcolata in modo ricorsivo interpolando tra L t 8209 L t82091 e la stima precedente del trend, T t-1. utilizzando pesi di 946 e 1-946: L'interpretazione del trend-smoothing costante 946 è analoga a quella del livello-levigatura costante 945. Modelli con piccoli valori di 946 assume che la tendenza cambia solo molto lentamente nel tempo, mentre i modelli con grande 946 supporre che sta cambiando più rapidamente. Un modello con un grande 946 ritiene che il lontano futuro è molto incerto, perché gli errori in trend-stima diventano molto importanti quando la previsione più di un periodo avanti. (Torna a inizio pagina.) Il livellamento costanti di 945 e 946 può essere stimato nel modo consueto minimizzando la media errore delle previsioni 1-step-ahead quadrato. Quando questo fatto in Statgraphics, le stime risultano essere 945 0,3048 e 946 0.008. Il valore molto piccolo di 946 significa che il modello assume molto poco cambiamento di tendenza da un periodo all'altro, in modo sostanzialmente questo modello sta cercando di stimare un trend di lungo periodo. Per analogia con la nozione di età media dei dati utilizzati nella stima del livello locale della serie, l'età media dei dati che viene utilizzato per stimare la tendenza locale è proporzionale a 1 946, anche se non esattamente uguale ad esso . In questo caso risulta essere 10,006 125. Questo isn8217t un numero molto preciso in quanto la precisione della stima di 946 isn8217t realmente 3 decimali, ma è dello stesso ordine generale di grandezza della dimensione del campione di 100, così questo modello è una media di più di un bel po 'di storia nella stima del trend. La trama meteo seguente mostra che il modello LES stima un leggermente maggiore tendenza locale alla fine della serie rispetto alla tendenza costante stimata nel modello SEStrend. Inoltre, il valore stimato di 945 è quasi identica a quella ottenuta inserendo il modello SES con o senza tendenza, quindi questo è quasi lo stesso modello. Ora, queste sembrano le previsioni ragionevoli per un modello che dovrebbe essere stimare un trend locale Se si 8220eyeball8221 questa trama, sembra che la tendenza locale si è trasformato in basso alla fine della serie Quello che è successo I parametri di questo modello sono stati stimati minimizzando l'errore quadratico delle previsioni 1-step-ahead, non le previsioni a lungo termine, nel qual caso la tendenza doesn8217t fare un sacco di differenza. Se tutti si sta guardando sono errori 1-step-avanti, non si è visto il quadro più ampio delle tendenze sopra (diciamo) 10 o 20 periodi. Al fine di ottenere questo modello più in sintonia con la nostra bulbo oculare estrapolazione dei dati, siamo in grado di regolare manualmente la tendenza-smoothing costante in modo che utilizzi una base più breve per la stima di tendenza. Ad esempio, se si sceglie di impostare 946 0.1, quindi l'età media dei dati utilizzati nella stima la tendenza locale è di 10 periodi, il che significa che ci sono in media il trend negli ultimi 20 periodi che o giù di lì. Here8217s quello che la trama del tempo si presenta come se impostiamo 946 0.1, mantenendo 945 0.3. Questo sembra intuitivamente ragionevole a questa serie, anche se probabilmente è pericoloso estrapolare questa tendenza eventuali più di 10 periodi in futuro. Che dire le statistiche di errore Ecco un confronto modello per i due modelli sopra indicati, nonché tre modelli SES. Il valore ottimale di 945.per modello SES è di circa 0,3, ma risultati simili (con leggermente più o meno reattività, rispettivamente) sono ottenute con 0,5 e 0,2. exp lineare (A) Holts. levigatura con alfa e beta 0,3048 0.008 (B) Holts exp lineare. levigatura con alpha 0.3 e beta 0.1 (C) livellamento esponenziale semplice con alfa 0,5 (D) livellamento esponenziale semplice con alpha 0.3 (E) livellamento esponenziale semplice con alpha 0.2 Le loro statistiche sono quasi identiche, quindi abbiamo davvero can8217t fare la scelta sulla base di errori di previsione 1-step-avanti all'interno del campione di dati. Dobbiamo ripiegare su altre considerazioni. Se crediamo fermamente che ha senso basare la stima attuale tendenza su quanto è successo negli ultimi 20 periodi o giù di lì, siamo in grado di fare un caso per il modello LES con 945 0,3 e 946 0.1. Se vogliamo essere agnostici sul fatto che vi è una tendenza locale, poi uno dei modelli SES potrebbe essere più facile da spiegare e darebbe anche altre previsioni middle-of-the-road per i prossimi 5 o 10 periodi. (Ritorna all'inizio pagina.) Quale tipo di trend-estrapolazione è meglio: L'evidenza empirica orizzontale o lineare suggerisce che, se sono già stati adeguati i dati (se necessario) per l'inflazione, allora può essere imprudente per estrapolare lineare a breve termine tendenze molto lontano nel futuro. Le tendenze evidenti oggi possono rallentare in futuro, dovuta a cause diverse quali obsolescenza dei prodotti, l'aumento della concorrenza, e flessioni cicliche o periodi di ripresa in un settore. Per questo motivo, semplice livellamento esponenziale spesso si comporta meglio out-of-sample che altrimenti potrebbero essere previsto, nonostante la sua quotnaivequot estrapolazione di tendenza orizzontale. modifiche di tendenza smorzato del modello di livellamento esponenziale lineare sono spesso utilizzati in pratica per introdurre una nota di conservatorismo nelle sue proiezioni di tendenza. Il modello LES smorzata-tendenza può essere implementato come un caso particolare di un modello ARIMA, in particolare, un modello (1,1,2) ARIMA. E 'possibile calcolare gli intervalli di confidenza intorno previsioni a lungo termine prodotte da modelli di livellamento esponenziale, considerandoli come casi speciali di modelli ARIMA. (Attenzione: non tutto il software calcola correttamente intervalli di confidenza per questi modelli.) La larghezza degli intervalli di confidenza dipende (i) l'errore RMS del modello, (ii) il tipo di levigatura (semplice o lineare) (iii) il valore (s) della costante di smoothing (s) e (iv) il numero di periodi avanti si prevedono. In generale, gli intervalli distribuite più veloce come 945 diventa più grande nel modello SES e si propagano molto più velocemente quando lineare piuttosto che semplice lisciatura viene utilizzato. Questo argomento è discusso ulteriormente nella sezione modelli ARIMA delle note. (Torna all'inizio della pagina.)
No comments:
Post a Comment